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M A T H E M A T I C A L  M O D E L I N G  

OF ELASTIC P H A S E  T R A N S I T I O N S  

I. A. Kaliev UDC 539.3 

Various modifications are proposed for a model describing phase transitions in multidimensional elastic 
media via a nonconvex free energy function. The material density is considered to be an order parameter 
responsible for the difference between phases. These models can be used in the description of physical 
phenomena, such as phase transitions in solids (e.g., graphite-diamond), or in the description of shape- 
memory materials. In the case of one space variable, the model is a generalization of the well-known Falk 
model [1-3]. Some of its partial solutions are found. 

1. I n t r o d u c t i o n .  It is agreed that a phase transition takes place if some of the quantities that 
characterize macroscopic properties of a material change discontinuously with respect to external variables. 
The energy function is used as one of the parameters to describe the state of the material. This may be the 
internal energy, the Helmholtz free energy, or the Gibbs free energy which are connected by the Legendre 
transform. We are interested not in the well-known Stefan phase transitions when the energy of the material 
changes discontinuously, but in the transitions for which the energy function varies continuously, and its 
derivatives may have a discontinuity. If the first derivatives are discontinuous, then we have a first-order 
phase transition. For second-order phase, only the second derivatives may have a discontinuity. It is generally 
assumed that the internal energy and the Helmholtz free energy are nonconvex functions in some interval of 
their arguments. To describe phase transitions in more detail, we can use a specific parameter called the order 
parameter which characterizes the difference between phases. 

The theoretical description of phase transitions started with the well-known van der Waals equation 
(see [4]) for the liquid-vapor first-order phase transition. In this work phase transitions were first described 
using a nonconvex energy function. In [5] dependence on the density gradient was added as a parameter to 
the free energy function to obtain a continuous profile across the liquid-vapor interface. 

An important step in the description of the second-order phase transitions was taken by L. D. Landau 
[6] who began to develop the theory that was later referred to by his name. The basic assumption made in 
[6] is that the energy function only depends on the order parameter and temperature.  To avoid the sharp 
distinction between phase boundaries, V. L. Ginzburg extended the energy function with the dependence on 
the gradient of the order parameter [7]. The differential equations thus obtained are often referred to as the 
Ginzburg-Landau phase transition theory. Independently, A. F. Devonshire [8] developed a similar theory for 
ferroelectrics. 

In [1-3], strain is treated as the order parameter responsible for the phase difference in the description 
of the elastic phase transitions. In this case the free energy function is similar to that proposed in [6, 7]. The 
problems concerned with the one-dimensional Falk model were investigated in [9, 10]. 

Concerning the Falk models, we remark that they assume the material density to be constant, which 
is not always justified in practice. 

2. T h e  S ta t i c  L a n d a u  T h e o r y .  Let a body occupy volume f2 and be in an equilibrium state. We 
st~ldy the equilibrium case when all the variables do not depend on time and the temperature 0 is constant 
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throughout the volume f~. The equilibrium state is determined by a minimum of total free energy 

= f pE dx + Ecxt, s 

f~ 

where p = p(x) is the material density; x are the space coordinates; pE is the density of the Helmholtz free 
energy per unit volume; E is the specific free energy; s is the contribution from the external forces to the 
total energy. In the Landau theory, we assume that E depends on the density p and temperature 0, and in 
the Ginzburg-Landau theory E depends also on the density gradient ~Tp. We do not refine the form of the 
function Er simply noting that Er is a functional of the displacement vector. For simplicity we can assume 
E~t = 0. This corresponds to the absence of external volumetric forces, and the domain boundary 0~ is also 
free from the action of the external surface forces, i.e., the body is free. A free body is in equilibrium if the 
equilibrium density Peq represents the minimum of the function pE. 

For further consideration we postulate the equation of state as the dependence of E on p and 0. Assume 
that E, or more precisely, the function F = pE, is of a form similar to that presented in the picture: F is 
a nonconvex function of the argument p; F ~ cxz as p ~ 0 and p ~ co, F has the only minimum at high 
temperatures, which corresponds to the density Ph of the high temperature phase, and two (or more) minima 
at low temperatures corresponding to the densities Pli of the low temperatures phases. At some temperatures, 
high- and low-temperature phases may coexist. 

An absolute minimum over p with the temperature fixed corresponds to the stable phase, and the 
other minima correspond to metastable phases. To decrease its energy, the material can change state from 
metastable to stable, but to do this it is necessary to overcome a certain energy barrier. 

3. T h e  D y n a m i c  L a n d a u  Theo r y .  The Lagrange description used thereafter is the most suitable 
for elastic bodies. We can write the system of equations for p, 0, and the displacement vector u using the 
equation of state E = E(p, 0). This is done in the same manner as in the thermoelasticity theory, with the 
only difference that in this theory E = E(g, 0), where g is the Lagrange strain tensor 

(0;,)(0;,). (0;,) 
2g = + + o u = x -  ~ (3.1) 

[~ are the Lagrange coordinates, x are the Euler coordinates, x = x(~, t)]. 
The formula for density can be derived from the equations of continuity and momentum [11]: 

p(~, t) = p0(~)(1 + 2J1 + 4J2 + 8J3) -1/2. (3.2) 

Here p0(~) is the initial density distribution; Jk = Jk(k) is the kth invariant of the strain tensor ~ = ~(~, t) 
= 1, 2, 3) .  
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The internal energy U is connected with the free energy E, temperature  0, and entropy S by the 
relation U = E + 0S. It is convenient henceforth to denote by/3  the auxiliary tensor connected with the stress 
tensor P by the formulas 

where 

P = T o P o T * ,  / 3 = T - l o P o T  *-',  (3.3) 

0x 0u  
T - O ( - I +  0-~ 

is the distortion tensor; I is the unit  tensor. 
Due to the elastic body thermodynamics  axiom [I 1] 

dS 
pO ~ = div (~eV0) 

we can derive OE Op OE 

~3=POp Og' S - - O0 

(3.4) 

(3.5) 

(3.6) 

from the heat influx equation. Here Op/Og is the gradient of the tensor function p(g) with respect to g. 
Using (3.2) and (3.6), we find/3: 

OE f l  p = _ p - ~ p [ - ~ p o ( l + 2 J l + 4 J 2 + 8 J 3 ) - 3 / 2 2 (  OJ1 20J2 40J3~] 
k-g-y+ -57+ / j 

OE p3 
---- --p ~ p  ~O[I + 2 ( J l / -  g) + 4(,/21 - J,g + g2)], (3.7) 

p40E 
t3 _ P02 ~p[(1 + 2J1 + 4J2)I - (2 + 4J1)g + 492]. 

The second formula in (3.6) and axiom (3.5) are used in deriving the equation for temperature 

-pO 02E O0 0 / 3 0 g  (3.8) 
002 Ot div (eeV0) = 0 0-O-" : 0--t" 

Let us give an example of the dependence of E on 0: 

pE(p,O) = Eo(O) + (0 - Oo)El(p) + E2(p), Eo(O) = C1 + C20 - COlnO. 

Here the coefficient at Ot in Eq. (3.8) equals C. It would appear reasonable in the general case that 

02E 
0 < - p O - ~  < oo. 

We insert the displacement u into the momental  equation by the relations 

0x 0u dv 02u 
V - -  - -  

Ot Ot' dt Ot 2 " 
The momrntal  equation takes the form 

02u 
p - ~ -  = div P + pf. (3.9) 

It is easy to verify that  Eqs. (3.8) and (3.9) together with Eqs. (3.1)-(3.4), and (3.7) form a closed 
system of equations for u and 0. For the written form of the equations to be complete, it is necessary to change 
the div operations in (3.8) and (3.9) to the Lagrange coordinates. If div~ is written in the Euler coordinates, 
and div~ is written in the Lagrange coordinates (V~ and V~ have the same meaning), then the transformation 
required is given by the formulas 

divzP = d iv ( ( r  o/3) _ T o/3 o T*(div~(T*-l));  (3.10) 

divz(eeV0) = div~(aeT -1 o r *-1 (V~0}) - eer*-l(V(O)div~(r *-I ). (3.11) 
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System (3.1)-(3.4), (3.7)-(3.11) is complicated both for solving particular problems and for the general 
mathematical analysis. For this reason we study its linear variant. 

The starting point of the linear theory is the notion of a natural state of a thermoelastic body. A state 
is called natural if there are no deformations (g = 0) in it, and the density and temperature are constants 
(P = p0, 0 = 00). We search for another solution which differs little from the natural ztate. A deformation 
is called small if the norm of the tensor T - I is small in comparison with the units. According to formulas 
(3.1) and (3.4), smallness of deformations is equivalent to smallness of the norm of the tensor 0 u / 0 (  or g. In 
addition, we assume that the temperature difference t~ = 0 - 00 and its derivatives are small (of the order of 
smallness of the tensor g). We obtain the relationships of the linear theory if we drop the quantities of the 
highest order of smallness in comparison with a small norm of the tensor T - I. Thus, according to the linear 
theory, relations (3.1) and (3.2) are reduced to the following: 

where 

Formula (3.7) takes the form 

2g = \ 0 ~ 1  + ~ ; (3.12) 

p = po(1 - Jl(g)) .  (3.13) 

= ( - p  - aO + AJ1)I  + 2#g, (3.14) 

~ p  ~ 02E OE 02E  
v = .  = p~o (po,Oo); ~ = p~ o-)N(po, Oo); ~ = 2p~o -gep (po, Oo) + po ~ __-gY(P~176176 

When (3.14) is taken into account, the linearized Euler stress tensor P from (3.3) is written as 

P = ( - p -  aO + AJ1)I.  (3.15) 

Finally, we assume that the heat conductivity coefficient is ze = const. As a result, Eqs. (3.8) and (3.9) 
are reduced to the following system of equations 

02u 
- - a V O  + AV(divu) + p0f; P00t  2 

00 0 
0--[ = kAO - ~ ~-~(div u). 

Here 

(3.16) 

(3.17) 

ze aOo 
k =  2 ; 13= 

0 E ,  0 ~ - '~ 02E  -poOo - ~ r t p o ,  oJ -povo-o- f f (po ,  Oo) 

The operations div, V, A in (3.16) and (3.17) are performed over the Lagrange variables ~ (for brevity, the 
index ,~ is omitted). 

Unlike the corresponding equations of the classical linear thermoelasticity theory, Eq. (3.16) has no 
term with Au. This is a fundamental point, since the remaining term AV(div u) is not an elliptic operator in 
the case of the stationary problem. 

The initial conditions for Eqs. (3.16) and (3.17) have the form 

u ,=0 = u 0 ( ~ ) ,  u t  t=0 = u l ( C ,  0 t=0 = 0 0 ( ~ ) ,  ( 3 . t s )  

arid the boundary conditions on the side surface of the cylinder ST = 0fl x (0, T) are the following: 

(divu) ST = v , ( ( , t ) ,  0 ST = O,(~,t) .  (3.19) 

The problem (3.16)-(3.19) is well posed for k > 0, A > 0, i.e., the solution {u, 0} exists, is unique, and depends 
on the problem's data continuously. The proof of this statement is not given in this article. 
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In the case of one space variable [(( , t)  G qr = (~1,~2) X (0, T)], Eqs. (3.16) and (3.17) take the form 

poutt = -aO~ + Au(( + pc f ;  

Ot = kOe~ - f l u &  

(3.20) 
(3.21) 

Let us consider the solutions of the problem (3.20), (3.21) with strong discontinuity, namely, it is assumed 
that  there exists a smooth function ~ = R ( t )  which divides the domain QT into two subdomains (QT and 
Q+). In each of the subdomains QT and Q+, functions u and 0 are smooth functions and satisfy Eqs. (3.20) 
and (3.21) in the classical sense. The functions u, 0 may have a discontinuity at the phase interface ~ = R(t). 
In this case the jumps of the functions u, 0, u(, and 0( are not arbitrary but connected by definite relations 
called the strong discontinuity equations: 

D [ p o u t ] -  [o~01 + [Aur = O; (3.22) 

D[O] + D[/3u~] + [kO~] = 0. (3.23) 

H e r e [ g ] =  lim g ( ~ , t ) -  " ~--.R(t)+0 ~ fi}~_0g(~ , t); D is the velocity of the boundary ~ = R(t): D = dR( t ) / d t ;  the 

coefficients p0, a, A, k,/3 are constants different in QT and Q~,. 
We search for partial solutions with strong discontinuity in the infinite domain (~, t) E ( - c~ ,  ~ ) x  (0, ec) 

which are of the type of running waves: u(~, t) = u(~ - at) ,  0(~, t) = 0(~ - at) ,  R ( t )  = at.  For this we assume 
that  p o f  = qp(~ - at)  with the known function ~ and given number  a. Let us denote ~ - at = z, u -  = u(z) ,  
O- = O(z) as z < O, u + = u(z ) ,  0 + = O(z) as z > 0. For functions u +, 0 + from Eqs. (3.20) and (3.21) we have 
the system of ordinary differential equations: 

a 2 p o U z z  = --o~Oz + .XUzz + cy; (3.24) 

--aOz = kOzz -I- a/~uzz, (3.25) 

and from the strong discontinuity equations (3.22) and (3.23) we have the conditions of conjugation for z = 0: 

a b0 .] + [501 - = 0; (3.26) 

a[O] + a[/3uz] + [kOz] = 0 (3.27) 

([g] = 9+(0) - g-(0)) .  On integrating the system (3.24), (3.25), we obtain 

]r A=t= A:t= z A:t: y 
O:t:(z) = 0~(0) + 0~(0) )-~-(1 - e -k--~z) - a~+ e - k  -a2"z f e k - W v  f ~ o ( x ) d x d y ,  

0 0 

( k+a+ ) z  - e  k-'-2 
(A• o - 

- ek- '~  ~ (x )  dxdydw ,  -1 (a2pi~ -- /~4-)0 0 ~ ( x ) d x d y  + k:l=(a2p~o _ A+)2 0 0 0 

A + = a  1 -  (a2pio 

Superscripts + and - correspond to the values with z > 0 and z < 0. Eight integration constants [u+(0), 
u~(0), 0+(0), 0~(0)] must  meet two relations (3.26) and (3.27), and thus only six of them are independent,  
e.g., u+(0), Uz(0), 0+(0), 07(0 ). Then u+(0), 0+(0) are found from (3.26) and (3.27). 

58 



4. T h e  D y n a m i c  G i n z b u r g - L a n d a u  Theory .  It is assumed in the Ginzburg-Landau phase 
transition theory that the specific free energy E depends on the density p, temperature 0, and the density 

1 N 

gradient vep  = pe = ( O p l O ~ , , o A < ~ , o ~ o a ) :  

E = E(p,O, Vep) = EL(p,O) + 7 IVepl 2 (4.1) 
2 p 

[EL(p, O) is the Landau free energy]. 
The main problem of this section is to obtain the dependence of the Lagrange strain tensor t3 on g 

and 0 which corresponds to the given function E from (4.1). 
Let us consider an arbitrary movement of the domain f~: g = g(~,t), 0 = 0(~,t) satisfying the 

equation of the energy balance [11]: 

f P ~ t d ~ d t =  f (/3 : gt + div(aeVO))d~dt, (4.2) 

QT QT 

and the condition 

flnfl0,1.. ST 0fl ST = O--~ . n = 0  

on the boundary ST = Or2 x (0, T) (n is the vector of the external normal to OFt). 
Since U(~, t) = E + OS, we have 

OU OE OS O0 
P-5-i = P-57 + Po N + ps-$i  ; 

OE OE Op OE O0 
P- -5  = p Op Ot + p OO Ot 

Substituting (4.4), (4.5) into (4.2) and using (3.5), we obtain 

Qr 

We separately consider 

/ .., =. S {aiv,(., -.,. 
QT QT ST QT 

- - - - + P o p e  = P~, ~ 2p2 g i  + e - -oT + p 7 3  

+ /~,e ~ <et=//3: e, < d ,  
QT QT 

Op Op 
= 7  f Pe'n-~-~d{dt-7 f ~,.-~<d, 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The integral over the boundary ST from (4.7) equals zero due to condition (4.3). Taking into account Op/Ot = 
(0p/0g) .&, we derive from (4.6) and (4.7) 

j{(,... ),. } )0, 
P op 2e IVepl2 - "~zxeP ?7 - / 3  : & d~dt + p - -  -F ,5 --~ d,~dt = 0. (4.8) 

Or Or 

Since g and 0 are independent and arbitrary, we have from (4.8) 

OEL ,~ ) Op 8 _  OEL /3= P ]V~p[2_.rAe p 
00 ' Op 2p O--g" (4.9) 

The quantity Op/Og is already calculated when obtaining (3.7). The substitution of this expression into (4.9) 
results in the formula 

t3_ p~ 0~- + 2p 2 IV~P[2-t- P0 Aep [(1 + 2J1 + 4J2)I - (2 + 4J1)g + 492]. (4.10) 
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It is interesting to compare (4.10) with the expression for the stress tensor given by Korteweg [12] for 
compressible liquid: 

G-; + c~lVpl~ + c~Ap z + r | v p  + c4v | vp.  (4.11) 

Here ci are functions of the density p and temperature 0; (a | b)ii = aibj. It is clear that the terms with the 
unit tensor I in (4.10) and (4.11) are of the same kind. 

Equations (3.8) and (3.9) together with formulas (3.1)-(3.4), and (4.10) form a closed system of 
equations for u and 0. 

Acting as in Section 3, after linearization we obtain the linearized Lagrange stress tensor 

= ( - p  - a~ + A J1 + 7poAp)I  + 2#d, 

where p, a, A, # are the same as in formula (3.14) with E replaced by EL. The linearized Euler stress tensor 
is P = ( - p -  a~ + AJI + 7poAp)I .  

Analogs of Eqs. (3.16) and (3.17) for u and 0 take the form 

692u 
po Ot 2 - -  = - a v o  + AV(div u) - 7p20VA(div u) + pot'; 

00 O 
= kAO - fl -g:(div u). 

0--/ 

Equations (4.12) and (4.13) have the following initial conditions: 

(4.12) 

(4.13) 

u t=0 =u0(~) ,  u, t=0 = ul(~), o,=0 = o0(~), (4.14) 

and the conditions on the side surface of the cylinder ST = 0fl x (0, T) are given by 

cg(div u) ST (divu) sT=0' an =0,  O S T = G ( G t  ). (4.15) 

The problem (4.12)-(4.15) is well posed. 
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